

Large-scale EXecution for Industry & Society

Deliverable D4.4

Definition of workload management policies in federated

Cloud/HPC environments

Co-funded by the Horizon 2020 Framework Programme of the European Union

Grant Agreement Number 825532
ICT-11-2018-2019 (IA - Innovation Action)

Project Coordinator: Dr. Jan Martinovič – IT4Innovations, VSB – Technical University of Ostrava

E-mail: jan.martinovic@vsb.cz, Phone: +420 597 329 598, Web: https://lexis-project.eu

DELIVERABLE ID | TITLE D4.4 | Definition of Workload Management Policies in Federated
Cloud/HPC Environments

RESPONSIBLE AUTHOR Martin Golasowski (IT4I)

WORKPACKAGE ID | TITLE WP4 | Orchestration and Secure Cloud/HPC Services Provisioning

WORKPACKAGE LEADER Alberto Scionti (LINKS)

DATE OF DELIVERY (CONTRACTUAL) 31/03/2020 (M15)

DATE OF DELIVERY (SUBMITTED) 30/06/2020 (M18)

VERSION | STATUS V1.4 | Final

TYPE OF DELIVERABLE R (Report)

DISSEMINATION LEVEL PU (Public)

AUTHORS (PARTNER) IT4I, LRZ, LINKS, ATOS

INTERNAL REVIEW Stephane Louise (CEA), Frederic Donnat (O24), Stanislav Böhm (IT4I)

mailto:jan.martinovic@vsb.cz
https://lexis-project.eu/

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 2/29

DOCUMENT VERSION

VERSION MODIFICATION(S) DATE AUTHOR(S)

0.1 Table of Contents, outline 21/01/2020 Martin Golasowski (IT4I)

0.2 Detailed table of contents 04/02/2020 Martin Golasowski (IT4I)

0.3 Filled in sections required from LRZ 27/02/2020 LRZ (all)

0.3.1 Reviewed and updated sections
requiring proof reading from Atos
(Sections 3.1 & 3.2)

28/02/2020 Marc Levrier (Atos)

0.4 Added state of the art on
scheduling policies, description of
Orchestration Service, description
of dynamic resource selection
mechanism and updated Glossary.

06/04/2020 Alberto Scionti, Giacomo Vitali, YuanYuan Li
(LINKS)

0.4.1 Section 2 review 26/04/2020 Alberto Scionti, Giacomo Vitali, YuanYuan Li
(LINKS)

0.5 Document restructuring, rewriting,
and correct wording

30/04/2020 Martin Golasowski (IT4I)

0.6 Revising and reorganization of
Subsection 4.3

19/05/2020 Alberto Scionti, Giacomo Vitali (LINKS)

1.0 Formal check, added summary,
preparation for internal review

21/05/2020 Martin Golasowski (IT4I)

1.1 Internal review version 22/05/2020 Martin Golasowski (IT4I)

1.2 Addressing reviewers´ comments 06/06/2020 Alberto Scionti (LINKS)

1.3 Preparation for final submission 26/06/2020 Martin Golasowski (IT4I)

1.4 Final check and minor changes 29/06/2020 Kateřina Slaninová (IT4I)

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 3/29

GLOSSARY

ACRONYM DESCRIPTION

AAI LEXIS Authentication and authorization interface

DDI LEXIS Distributed Data Interface

HDD Hard Disc Drive

HEAPPE High-End Application Execution Middleware former HPC as a Service Middleware

HPC High Performance Computing

MOC Model of Computation

NVME-OF Non-volatile Memory over Fabric communication protocol

SBB Smart Burst Buffer

SBF Smart Bunch of Flash

SSD Solid State Drive

TABLE OF PARTNERS

ACRONYM PARTNER

Avio Aero GE AVIO SRL

AWI ALFRED WEGENER INSTITUT HELMHOLTZ ZENTRUM FUR POLAR UND MEERESFORSCHUNG

Atos BULL SAS

BLABS BAYNCORE LABS LIMITED

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

CIMA Centro Internazionale in Monitoraggio Ambientale - Fondazione CIMA

CYC CYCLOPS LABS GMBH

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

GFZ HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ

IT4I VYSOKA SKOLA BANSKA - TECHNICKA UNIVERZITA OSTRAVA / IT4Innovations National
Supercomputing Centre

ITHACA ASSOCIAZIONE ITHACA

LINKS FONDAZIONE LINKS / ISTITUTO SUPERIORE MARIO BOELLA ISMB

LRZ BAYERISCHE AKADEMIE DER WISSENSCHAFTEN / Leibniz Rechenzentrum der BAdW

NUM NUMTECH

O24 OUTPOST 24 FRANCE

TESEO TESEO SPA TECNOLOGIE E SISTEMI ELETTRONICI ED OTTICI

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 4/29

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 6

1 INTRODUCTION ... 7

2 RESOURCE ALLOCATION REQUIREMENTS IN PILOT APPLICATIONS .. 8

2.1 WP5 (AERONAUTICS) .. 8
2.2 WP6 (EARTHQUAKE AND TSUNAMI) ... 8
2.3 WP7 (WEATHER AND CLIMATE)... 9

3 INFRASTRUCTURE CONSTRAINTS AND REQUIREMENTS .. 10

3.1 CLOUD ... 10
3.1.1 Constraints .. 10
3.1.2 Orchestration metrics ... 10

3.2 HPC.. 10
3.2.1 Constraints .. 11
3.2.2 Orchestration metrics ... 11

3.3 ACCELERATION .. 11
3.3.1 Field Programmable Gate Array (FPGA) Accelerator .. 12
3.3.2 Burst Buffer nodes .. 12

3.4 DDI .. 13
3.4.1 Constraints .. 14
3.4.2 Orchestrator metrics... 14

4 ORCHESTRATOR INTEGRATION .. 15

4.1 STATE-OF-THE-ART ON DISTRIBUTED AND GRID COMPUTING ORCHESTRATION SYSTEMS ... 15
4.2 ORCHESTRATOR ARCHITECTURE .. 16

4.2.1 Business Logic component .. 18
4.3 WORKLOAD PLACEMENT POLICY ... 18
4.4 FULFILLING PILOT-DRIVEN REQUIREMENTS .. 19
4.5 SERVICE AVAILABILITY LEVEL AND RECOVERY OF WHOLE PLATFORM .. 19
4.6 ORCHESTRATOR SECURITY ... 21

5 ORCHESTRATOR GLOSSARY AND TERMINOLOGY .. 22

5.1 LEXIS ENTITIES TERMINOLOGY .. 22
5.1.1 LEXIS Computational Project .. 22
5.1.2 HPC Computational Project .. 22
5.1.3 Principal Investigator .. 23
5.1.4 LEXIS Task ... 23
5.1.5 LEXIS Workflow Template ... 23
5.1.6 LEXIS Workflow ... 23
5.1.7 LEXIS Workflow Execution .. 23
5.1.8 LEXIS Task Execution ... 23
5.1.9 LEXIS Workflow Catalogue ... 23
5.1.10 LEXIS User Dataset ... 24
5.1.11 LEXIS Dataset Listing .. 24

5.2 ORCHESTRATION SERVICE TERMINOLOGY ... 24
5.2.1 YSTIA (A4C) Catalogue .. 24
5.2.2 YSTIA (A4C) Application Template .. 24
5.2.3 YSTIA (A4C) Application .. 24
5.2.4 YSTIA (Yorc) Workflow .. 24
5.2.5 YSTIA (Yorc) Workflow Run ... 25
5.2.6 LEXIS Workflow Extraction from AC4 Application Template .. 25

6 SUMMARY ... 26

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 5/29

REFERENCES ... 27

LIST OF FIGURES

FIGURE 1 LEXIS ORCHESTRATION SERVICE ARCHITECTURE (BLUE DASHED BOX REPRESENTS THE MODULES BELONGING TO YSTIA) 17
FIGURE 2 YORC HIGH AVAILABILITY DEPLOYMENT ... 20
FIGURE 3 ALIEN4CLOUD HIGH AVAILABILITY DEPLOYMENT ... 21
FIGURE 4 USER-VIEW OF THE LEXIS PLATFORM ENTITIES AND THEIR RELATIONSHIPS... 22

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 6/29

EXECUTIVE SUMMARY

Dynamic orchestration of HPC and Cloud workloads is one of the main goals of the LEXIS project. In order to

successfully design the workload placement policies, metrics, constraints and requirements coming from

infrastructure and use cases must be collected. Initial proposal of the dynamic placement policies and usage of the

collected requirements and metrics is provided in this document. The policies will be further extended and

formalized during the project with experience gained from the pilot use cases and Open Call applicants.

Position of the deliverable in the whole project context

This report defines metrics and requirements coming from the infrastructure (DDI, Cloud and HPC and the platform

users — pilot use cases (WP5-WP7)). It is part of the Task 4.4 Integration of the Overall HPC/Cloud Orchestration

System. This report collects important requirements and constraints needed to design and implement the final

orchestration system which will be described in Deliverable D4.6 [1], due in M30.

Description of the deliverable

The document is divided into three main sections, the Section 2 focuses on collection of metrics provided by the

executed workflows provided by WP5-WP7. Section 3 describes requirements and constraints imposed by the

underlying computing and storage infrastructure. Content of these sections will allow to precisely formulate

requirements on workflows which would like to use the LEXIS platform and on infrastructure providers which would

like to allow the platform to execute the workflows on their infrastructure. Besides that, the sections will provide

integral input to the design of the dynamic orchestrator, which is described in Section 4. Section 5 then provides

common glossary of terms using to describe the LEXIS orchestrator context.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 7/29

1 INTRODUCTION

LEXIS project will provide an execution platform for running complex workflows on federated HPC and Cloud

resources. The effective orchestration of application workflows represents a key point of the LEXIS platform. Among

the others, workload management policies (i.e., the mechanisms used to make decisions on which resources to

allocate workflow tasks) are at the basis of any effective orchestration solution, since they allow to select the set

of execution resources that better fulfil the applications and infrastructural requirements and constraints.

LEXIS orchestrator has been designed to provide, in its final form, an effective mechanism to select the

computational and storage resources to be used for executing workflow tasks: resources will be statically specified

in the workflow or will be dynamically selected by using evaluation criteria that will combine both the information

returned by the monitoring system and also application/user inputs. Moreover, workload management policies will

take advantage of the diversity of resources available at each computational site (IT4I and LRZ), which include Cloud,

HPC, Burst Buffer types.

To this end, YSTIA orchestration engine, along with the Alien4Cloud frontend (both developed by Atos), have been

extended in order to be able to use HPC resources, other than Cloud ones. Through a plugin for specialized

middleware (HEAppE), the YSTIA orchestration engine can launch jobs on HPC cluster resources. As part of the LEXIS

workload management policies, YSTIA solution implements a mechanism for statically define the resources to use.

Final version of the LEXIS platform will also implement a mechanism for dynamically selecting resources at the

workflow run-time, based on a service which will provide such information to the YSTIA orchestrator.

In the following sections, the requirements and constraints (collected both from pilot use cases and infrastructure),

the solutions devised to effectively execute the LEXIS workflows and consequently the specific mechanisms for

managing the allocation of the workload on the available infrastructural resources will be presented. Being part of

the service-based LEXIS platform, the LEXIS Orchestration Service and its main architectural components are

presented in this document. The remainder of this document is organized as follows. Pilot use cases and

infrastructural requirements and constraints are discussed in Section 2 and 3. Section 4 contains the details on the

definition of the workload management policies which are defined in terms of static and dynamic resource

allocation policies. Lastly, Section 5 provides the definition for the most used terms in the scope of the LEXIS project.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 8/29

2 RESOURCE ALLOCATION REQUIREMENTS IN PILOT APPLICATIONS

The analysis of the LEXIS pilot use cases allows to identify requirements from which the workload management

policy definition should be derived. The following subsections briefly summarize the Pilot use cases and, for each

of them, highlight main requirements. The way these specific requirements can be fulfilled is given in Section 4.

2.1 WP5 (AERONAUTICS)

This pilot includes two large-scale Aeronautics test beds, one referring to a Turbomachinery application and the

other one concerning a Rotating Parts case study. Being CPU-demanding, data intensive and time-consuming, both

the case studies can be informally described as typical HPC use cases.

These rely on sophisticated Computer-Aided Engineering (CAE) tools that are adopted to examine the behaviour of

complex flows in critical components of an aeronautical engine through Computational Fluid Dynamics (CFD)

simulations running on HPC systems. More specifically, as in any standard CAE analysis, such CFD simulations

include the following three phases [2, 3]:

• Pre-processing or uploading of input data,

• Simulation solver execution on HPC resources,

• Post-processing and visualisation of simulation result.

The first phase prepares or simply uploads the input data for the main simulation task. The data must be staged on

the HPC cluster storage by the DDI to avoid unnecessary data transfers. Staging area on the DDI must be large

enough to handle the data used by the application workflows provided by this pilot. The second phase, in the end,

is expected to have a run-time of several weeks for the Turbomachinery use case, and several hours or days for the

Rotating parts one depending on the investigated mesh resolution.

From the analysis of these use cases the following requirements emerge. The long-lasting simulation phase

demands a checkpointing mechanism, which must be implemented at the application level and the orchestrator

must support it by providing capabilities to handle data copy and repeated execution after a job failure.

Data locality also ensures optimal I/O performance when executing the post-processing and visualisation tasks

which will be run on the HPC cluster as well, using large-memory GPU-equipped graphic node. Worth to remark

here, is the fact that the target locations for executing the tasks associated to these three phases can be already

determined at the time of the execution of the workflow (static allocation policy – see Section 4). However,

locations that are more suitable for running workflow tasks can be found at run-time by leveraging on monitoring

information. For instance, this can be true for the post-processing tasks performed in Cloud.

2.2 WP6 (EARTHQUAKE AND TSUNAMI)

Workflows provided by this pilot are focused on simulation of possible tsunami occurrence after an earthquake and

a damage estimation. It uses geospatial database (PostGIS) with processed OpenBuildingMap data, which are

continuously updated. Execution of the tsunami simulation is triggered by an earthquake event or by user input

(what-if simulation). The simulation must provide results within a limited timeframe since the results are essential

for disaster management. Redundant execution of the workflow must be supported to ensure high availability of

the results (the same simulation is executed in multiple centres at once). A lower precision simulation can be

executed in this mode to ensure availability of the results in short time, while a higher simulation that takes longer

time can be executed in parallel to support the disaster management process.

Therefore, main requirements for the orchestrator can be identified in the support for event driven and periodic

execution. Support for prioritized execution to meet the imposed deadlines and simultaneous execution on multiple

resources to ensure high availability is also required [4, 5].

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 9/29

2.3 WP7 (WEATHER AND CLIMATE)

This pilot use case focuses on large-scale climate simulations using different models. Simulation outputs are thus

used to feed different models targeting various applications, including fire risk prediction, hydrological models, and

air quality analysis. Although targeting different possible applications, most of the processing stages contained in

this use case workflows are in common (e.g., WRF simulations), and large data sets are produced as well as

consumed as an input. Results of the simulations are also post-processed and visualised. The combination of highly

computational demanding workflow steps and less demanding ones makes the case for the use of both HPC and

Cloud infrastructural resources [6].

As the first requirement, the orchestrator must ensure data locality and minimize the needs of data transfer. As a

consequence, Burst Buffer storage acceleration will most likely prove as essential in this pilot. The simulations are

also long-term running, therefore meet the same requirement on checkpointing and resiliency support as

requested by WP5. Finally, WP7 use cases, along with WP6 use case, are those where urgent computing

requirements are the most prominent, as described in Section 4.4.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 10/29

3 INFRASTRUCTURE CONSTRAINTS AND REQUIREMENTS

This section describes requirements and constraints coming from the infrastructure that the orchestrator will

address. Metrics that can be provided by the centres to drive the dynamic orchestration are also listed here.

3.1 CLOUD

The cloud environments at IT4I and LRZ are implemented by OpenStack and provide on-demand virtual machines,

tenant networks and storage. IT4I operates experimental cloud which is dedicated purely for LEXIS and can be

reconfigured as requested, while LRZ operates production cloud which has a strict access and usage policy.

3.1.1 Constraints

• Tasks intended to run on the cloud side may depend on results produced by other tasks running on the HPC
par and the other way around.

• The technical capabilities or inabilities of the cloud environments may differ in each HPC service provider.
The application workflow modelling in the orchestrator will have to take these into account, while masking
their complexity to the end user of the platform.

• Orchestrator Notification functionality — for example monitoring of the workflow progress, low utilization of
VMs in the Cloud part, etc.

• The orchestrator must support the OpenStack API.

3.1.2 Orchestration metrics

• Resources availability
o Available resources for Cloud
o Cloud resources allocation within an HPC computational project (cloud credits)

• System availability
o System status — operating, maintenance, down
o Planned maintenance windows

• Availability of resources
o Number of vCPUs, RAM
o Storage types available (SSDs, Burst Buffer, HDDs) and size
o Networking (public IPs available, tenant networks)

• Requested allocation
o Provided by: Cloud API

3.2 HPC

HPC systems are characteristic for their batch execution mode. The systems are shared by many users and the

applications are executed on multiple bare-metal nodes with exclusive access. The applications are executed in jobs

which are scheduled for example by PBS Pro, Slurm, Torque and similar solutions.

Jobs are usually scheduled in multiple queues, each of which can correspond to a different type of resource (CPU

nodes, GPU nodes, visualisation nodes, etc.). Each queue can have also a different priority. HPC centres implement

their own allocation policy, which can include queue priority, amount of already consumed core hours in the current

HPC computational project and other criteria.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 11/29

3.2.1 Constraints

• Batch execution
o Multiple queues with different priorities and restrictions (nodes per job, resource type, etc.)
o Scheduler interface available only through SSH and command line interface
o The way jobs are scheduled by batch schedulers on HPC resources may differ at each HPC centre

(consumed resources in the HPC computational project, allocation type, etc.)

• Normalized core hours
o Consumption of core hours in single HPC centre on different clusters is multiplied by a certain factor;

for example — factor 0.9 is set for older system, 1.0 for current production and 1.2 for new
experimental one

o Core hours in IT4I are normalized
o LRZ does not implement normalized core hours – can be provided by the LEXIS platform

• Resource usage monitoring to avoid resource wasting
o Under-utilization of CPU
o Process hanged or frozen
o Disproportionate I/O time

• Allow exclusive selection of an HPC centre
o Only certain centres may be used to allocate tasks in a given workflow
o Data migration constraints (sensitivity, security, migration efficiency)
o Intellectual property constraints (patents)

• Cluster utilization balancing
o Make sure that the resources are consumed fairly among different centres

3.2.2 Orchestration metrics

• HPC Computational project availability
o Available resources (core hours) for HPC clusters
o Provided by a dedicated approval system

• Systems availability

• Basic monitoring for each system connected to the LEXIS Platform (available, down, maintenance, etc.)
o Planned maintenance dates
o Provided by HPC Centre internal monitoring system

• Resource availability
o Resource availability specific system (GPU, accelerators, storage, etc.)
o Amount of available resources
o Dedicated resources (static allocation, dedicated queue with high priority)
o LRZ provides only standard dynamic batch scheduling mode on HPC clusters
o Provided by HPC Centre internal monitoring system

• Requested allocation
o Resources requested by the user/task (no. CPU cores, GPU nodes, etc.)
o Provided by: HPC Scheduler

3.3 ACCELERATION

The LEXIS platform investigates FPGAs and Burst Buffer (BB) nodes as means to accelerate storage I/O and provide

optimal data locality for applications executed on HPC and Cloud resources while avoiding unnecessary data

movement.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 12/29

3.3.1 Field Programmable Gate Array (FPGA) Accelerator

Traditionally, FPGAs are programmed using hardware description languages such as VHDL or Verilog. This approach

still gives the best efficiency, but it is slow and prone to errors. Modern tools work with mixed C/C++/OpenCL code

(HLS synthesis) and provide a software layer able to manage data transfers between the CPU main memory and the

FPGA card, thus making algorithm acceleration easier. However, effort spent on porting the application to support

the FPGA is still necessary.

Following the LEXIS Pilot Workflows requirements, the acceleration tasks under investigation are:

• Data compression/decompression, mainly focusing on accelerating the popular zlib library

• Data encryption, for IP security reason, focusing on OpenSSH supported algorithms

• Basic data or image manipulation (i.e. GRASS GIS tasks)

It is possible to execute a task on the BB node, where certain computation intensive parts of the code are offloaded

on the FPGA card. This can be beneficial especially in processing of extensive data sets or high bandwidth data

streams.

Application which uses the FPGA resources is tied to version of the SDK supported by the specific firmware flashed

on the FPGA board itself. When the application is launched, the FPGA support driver loads the corresponding

programming file on the FPGA. This version check is necessary because at power up the FPGA is programmed with

the PCI express and SDRAM control logic, while the user accelerator is then loaded at runtime using the “partial

reconfiguration” FPGA feature.

In addition to the plain OpenCL SDK runtime environment, Intel is also working on a more complete stack aimed at

a datacentre distribution: this solution is known as Intel Acceleration Stack and is based on OPAE (Open

Programmable Acceleration Engine). OPAE is a set of drivers, user-space libraries, and tools to discover, enumerate,

share, query, access, manipulate, and reconfigure programmable accelerators; it is an open source solution freely

available on GitHub [7]. OPAE user-space library contains a set of objects that can identify and reference FPGA

accelerator resources; moreover, they provide a way to acquire, access and release the accelerators from the user

applications, even if running inside a virtual machine.

The orchestrator must ensure that correct design is pre-loaded on the card and the environment is prepared for

the application execution.

Intel Quartus software (used to build the final FPGA bitstream) can provide the following metrics:

• FPGA Utilization (as % of the internal resources, such as LUT, FF, BRAM, DSP),

• FPGA expected power requirement.

The FPGA runtime can provide these metrics:

• Performance stats (actual power as sensed by internal regulators, card, and FPGA temperature, QSFP status),

• Card properties (vendor, SDK version),

• Occupation status (available, down, in-use, etc.).

All these metrics collected from the FPGA cards become even more interesting from the orchestration standpoint,

if we consider future improvements of the SDKs, which are expected to provide more abstraction and capability of

sharing hardware resources among different applications and virtual machines (e.g., the Intel OPAE [7]).

3.3.2 Burst Buffer nodes

The burst buffer nodes are servers equipped with fast NVMe storage and connected to the Cloud and HPC

infrastructure by a high bandwidth network. The Burst Buffer software provided by Atos then allows to dynamically

allocate logical volumes on the NVMe drives and expose them to the Cloud and HPC on a per application or per

workflow basis. Since this is one of the core innovations of the whole LEXIS platform, the LEXIS orchestrator must

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 13/29

work with the Burst Buffers to handle allocation and deallocation of the volumes and provide access to the DDI

which then handles the data staging.

The Burst Buffer software provides two different modes of operation that are controlled by parameters given at

launch time:

• Smart Bunch of Flash (SBF) mode: The burst buffer creates a persistent NVMe volume that is spread over all
NVMe devices, then creates an XFS file system in it and exports it to one compute node using the NVMe-OF
protocol. In this mode, the parameter is the size of the volume. Several volumes can be exported to different
compute nodes. Each compute node will have its own dedicated volume. This mode can be also used to
export such volume to the OpenStack volume management service Cinder.

• Smart Burst Buffer (SBB) mode: The burst buffer acts as a transparent file system cache associated to one
job or a set of consecutive jobs using the persistent buffer feature. A dedicated software daemon is launched
for each instance of the service. In this mode of operation, many mandatory and optional parameters are
needed at launch time:

o Number of cores or the CGROUP in which the daemon is launched,
o RAM size used as L1 cache level (raw value, the actual data that can be cached is smaller due to the

overhead of data structures),
o NVMe disk space used as L2 cache level by SBB or exported volume by SBF (raw value, the actual data

that can be cached is smaller due to the overhead of LVM and the file system).

When the Burst Buffer services are launched, run time metrics are also available in both modes of operations. Some

metrics are common to both modes, while others are specific.

• SBF mode: no specific metrics in this mode.

• SBB mode: The SBB daemon provides through an administration command many internal metrics such as L1
Cache throughput, L2 Cache throughput, L1 cache IOPS, L2 cache IOPS: The value of these run time metrics
could be roughly estimated according to the available hardware (e.g. NIC, NVMe disks, etc.), to the allocated
resources for the SBB daemon (e.g. number of worker threads, etc.) and the load of the machine (e.g. number
of SBB daemons running in parallel on the same node).

• Common: all standard InfiniBand and LVM2 tools can be used to get dynamic metrics.

3.4 DDI

The DDI is designed on top of the iRODS [8] / EUDAT-B2SAFE storage system, therefore main constraints by the DDI

infrastructure will relate to characteristics of a typical iRODS system. The main potential bottlenecks are the storage

systems used as backend, and the PostgreSQL based iCAT (metadata) database of iRODS.

The main objective of orchestration with respect to DDI is to minimize expensive data transfer operations, and to

avoid out-of-space problems as well as overload of DDI systems. Therefore, we have the following principal

optimisation objectives:

• Different parts of the workflow should be executed at one computing centre in the absence of other reasons
(Cloud/HPC infrastructure full, etc.)

• Workflows should be executed at the same supercomputing centre as the data is located, unless the sum of
the cost of the transfer plus the computation is smaller in other centres.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 14/29

3.4.1 Constraints

• HPC parallel file system must be accessible to an iRODS client to enable data staging.

• Dedicated network with enough bandwidth must be available to both Cloud and HPC infrastructures.

• Backend file system for DDI must have enough space free.

• Orchestrator must consider limited I/O bandwidth available.

• Potential workflow regulation options (selected by the user): parts of the workflow must be computed in
specific HPC centre (due to matching Supercomputing allocations or characteristics of Cloud Systems).

• Periodic transfers of intermediate results to another centre.

3.4.2 Orchestrator metrics

• Number of compute-centre switches within a workflow, with a low weighting factor (e.g. 0.1 or even 0.0) for
switches with a concrete reason,

• Cost estimate for data transfer,

• Bandwidth measured between the different centres, and the different staging areas within the centres,

• Bytes transfer required for transfer between steps, including cost factor,

• Free space available in all tiers,

• System availability metrics,

• Ping check,

• Planned maintenance check,

• Access rights verification.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 15/29

4 ORCHESTRATOR INTEGRATION

This section describes the LEXIS Orchestrator design. Differences between static and dynamic workload placement

policies are described. The description takes into account requirements and constraints collected from the pilot use

cases (Section 2) and infrastructure (Section 3). Initial formulation of the underlying optimization problem and its

solution is provided along with correlation with the imposed requirements and constraints.

The main goal of the orchestrator is to execute the workflow task corresponding to the workflow specification on

the most appropriate resources. We refer to these resources as the location where to execute the task. Thus,

locations are representative of the resources made available on the HPC centres as HPC clusters or Cloud

infrastructures.

The resource selection process is driven by the allocation policy implemented by the orchestrator, and does not

affect the way the workload (i.e., jobs to be scheduled or VMs to instantiate) are managed at each location (e.g.,

once an HPC cluster is selected, the jobs associated to the allocated task are submitted to the batch scheduler,

which will schedule their execution according to its own scheduling rules). The factors to be considered when

designing the allocation policy are:

1. LEXIS platform relies on a geographically distributed infrastructure; thus, allocation of tasks should consider
the cost of eventually moving data closer to the selected resource,

2. Cloud and HPC resources have different characteristics and constraints (i.e., OpenStack virtual instances need
to be deployed before being used, while HPC jobs encounter a queuing time),

3. Applications can be executed only on a particular type of resource (GPU, FPGA, specific CPU architecture,
etc.).

The YSTIA orchestrator developed by Atos (see Deliverable 4.2 [9]) is used at the core of the LEXIS Orchestrator

component, which is described in detail in Section 4.2. The LEXIS Platform architecture is service based thus the

Orchestrator will expose an API and will communicate with the other components of the platform. Section 4.3

describes the workload placement policy and Section 4.4 provides connection between the requirements specified

in the previous sections and the proposed policy.

We also provide a current state of the art (SotA) in the domain of workload placement policies since it is a problem

which has been already tackled in various related fields, such as Compute Grids (CGs). Geographically distributed

resources are common property of the Compute Grids. Additional heterogeneity is introduced by various resources

available in each HPC centre (multiple HPC clusters and cloud systems available with various architectures, storage

systems and acceleration capabilities). We analysed several solutions that can inspire efficient solution of the

resource selection problem with geographically distributed and heterogeneous resources.

4.1 State-of-the-art on distributed and Grid computing orchestration systems

Mechanisms for dynamic resource selection have been proposed both in Cloud and Grid computing domains. In the

Cloud domain, many works proposed various approaches for selecting the resources to be used to run virtual

machines, which are based on a defined optimality criterion.

Among different ways to approach the problem of resource allocation (i.e., scheduling) in Cloud and Grid

computing, a large effort has been spent in mapping the allocation problem as a combinatorial optimization

problem, generally referred to as a (on-line) bin-packing problem [10, 11]. This latter is well-known to be NP-hard

to solve; so, heuristics have been proposed. To mention few, in [12], the authors proposed to hybridize the cuckoo

search heuristic with a gradient descent technique, to speed up the convergence of the algorithm towards the

optimal solution. The algorithm was used to reduce the execution time of Cloud workloads. In [13] PSO heuristic

was used to optimally schedule predicted workloads.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 16/29

In [14], the authors surveyed several approaches for allocating resources in the Cloud domain. To mention just a

few, Prodan et al. [15] proposed a bargaining-based resource scheduling technique (RST) in which market-based

negotiation takes place between the resource manager and the scheduler using self-limitation and aggressiveness;

Lyer et al. [16] proposed a method based on suggested pricing resource scheduling algorithms; in [17] the authors

used a cost-based approach, where a simple First-Come-First-Served scheduling technique was applied. Other

attempts used other type of heuristics, such as genetic algorithms [18] to allocate jobs using a cost-based evaluation

function. Also, energy minimization has been tackled by solving an associated mixed linear programming problem

[19]. The survey [14] completes the analysis of scheduling techniques with several approaches based on nature-

inspired scheduling algorithms (i.e., genetic algorithms, particle swarm optimization, ant colony optimization, etc.)

[20, 21]. Additional scheduling approaches oriented to cover specific requirements that are common in weather

forecast domain (and so in the related workflows) are reported in [22, 23]. Here, ways of considering urgent

computing needs are discussed.

Apart from the used approach to scheduling, the main difference between Grid computing and Cloud domain stems

in the distributed vs centralized nature of them. In Grid computing the assignment of resources is based on a pull

mechanism instead of a push one. The push mechanism is common in the Cloud, where the orchestrator takes

decision on the resources to use and then pushes the request to the selected nodes, where VMs are created and

started. On the other hand, the pull mechanism is commonly used in Computing Grids (CG), where each resource

signals its availability to the orchestrator and requests a new job to run. Examples of such pulling approach can be

found in the SETI@Home and BOINC [24] world-scale projects. Among the various projects that use CG to provide

computing resources, DIRAC [25] is one of the systems used to manage jobs in the CERN Computing Grid, specifically

on the LHCb experiment. In the DIRAC platform [26, 27], resources that participate in the computing infrastructure

have a local agent whose purpose is to interact with the centralized resource manager of the platform. Specifically,

the centralized resource manager is responsible to collect input job requests, register each submitted job in a local

database (containing job parameters and dynamic job status) and running the job in one of the available queues.

Each queue maps jobs that can be run on specific resources. Periodically, optimizer functions are applied on the

queues to reshuffle the jobs according to different criteria, and thus maintain a high throughput of the system. For

example, in [26] an availability criterion is used. It states that total number of jobs assigned to a resource should

not exceed a fraction 𝜀 of the total number of available CPUs

𝑇𝑜𝑡𝑎𝑙𝑄𝑢𝑒𝑢𝑒𝑖𝑛𝑔𝐽𝑜𝑏𝑠

𝑇𝑜𝑡𝑎𝑙𝐶𝑃𝑈𝑠
< 𝜀

Whenever the execution resources monitored by a local agent become ready for the execution of a new job, the

agent requests a job from the central management system. The management system then selects the job from the

queue and sends the job to the requesting agent, along with a configuration package which is used to create the

execution environment.

Compared to these two ways, LEXIS manages weakly coupled resources belonging to geographically distributed

HPC centres. However, in contrast to traditional CGs, the orchestration of workload is done through a centralized

component in the LEXIS architecture, which is similar to the Cloud approach. What LEXIS gets from the CG

approaches is the use of a simple estimation of the most appropriate location where to execute new jobs or run

VMs. This approach will be the focus of the next project period, where an algorithmic solution will be fully defined,

implemented, and integrated with the remainder of the platform. The following sections will provide more details

on the specific implemented approach.

4.2 ORCHESTRATOR ARCHITECTURE

In the co-design phase of the project has been decided that the architecture of the LEXIS will be service based. The

Orchestration Service module (Figure 1), in its final implementation, will integrate all the features required to

address user/application and infrastructure requirements and constraints previously described, as well as to

implement a dynamic allocation policy. This section briefly describes the main service components with the

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 17/29

emphasis on the Business Logic which will implement the dynamic allocation policy (see Section 4.3). Overall

architecture of the LEXIS platform is documented in Deliverables D2.2 [28] and D2.3 [29]. Details about the YSTIA

(i.e., the software stack used as a base for the implementation of the LEXIS orchestrator) are in Deliverable D4.2

[9].

Figure 1 LEXIS Orchestration Service architecture (blue dashed box represents the modules belonging to YSTIA)

Core of the Orchestration Service module is the YSTIA software provided by Atos. It is composed of Yorc – YSTIA

Orchestrator (i.e., the actual orchestration engine which executes the workflows), Alien4Cloud – A4C (i.e., the

orchestrator engine frontend, which allows to model workflows) and YSTIA Forge (i.e., a repository of TOSCA

components used to define workflows, also containing public available ones). Alien4Cloud (A4C) provides an API

and a GUI for describing YSTIA Application Templates using the TOSCA standard [30]. The templates are built from

individual components which are stored in a catalogue. This catalogue can be extended by the platform developers

on demand.

Yorc is an orchestration engine developed by Atos, which implements the static placement policy and executes the

actual YSTIA Workflows on the selected resources. It uses: i) HEAppE (i.e., a middleware developed by IT4I to

securely getting access to the HPC cluster resources) via a special plugin to interact with the HPC clusters; ii)

OpenStack API to interact with the Cloud; and iii) the API exposed by the LEXIS DDI to enable proper data migration

between the different compute resources. Actually, A4C integrates a plugin to delegate the execution of YSTIA

Application Templates on the underlying compute infrastructure to the Yorc engine. The same mechanism will be

used to implement the dynamic allocation policy: a delegator component communicates with the Business Logic to

obtain the location to use for the execution. Specifically, YSTIA workflows may contain delegators, which are a

convenient mechanism to call an external function or service. Delegators can be used to require the resource

selection for a given workflow task to the Business Logic. Thus, every time the workflow requires to dynamically

selecting the location for executing a task, then business logic API is called.

The API component exposes the LEXIS Orchestration Service interface, which can be used by other services and

modules, such as the LEXIS portal (developed in WP8 – see Deliverable D8.1 [31]). All API calls are authorized only

upon successful authentication of the supplied token with the LEXIS AAI through the AAI Connector component.

The monitoring component provides orchestration metrics which are then used by the billing system and the

monitoring system (Task 3.4) for auditing and operational purposes.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 18/29

4.2.1 Business Logic component

This component, in its final version, will be implemented as a service with an HTTP API to integrate easily with the

A4C delegators. It will connect to services providing measurable parameters of the infrastructural resources (e.g.,

allocated virtual cores on the Cloud, number of enqueued jobs, etc.), as described in Sections 2 and 3, which will

be used for dynamically selecting the most suitable set of resources to use, as described in Section 4.3.

Thus, both pilot applications use cases and infrastructural level requirements and constraints are taken into account

by the LEXIS Orchestrator Service. To this end, such requirements and constraints have to find a mapping with the

inner working mechanism of the orchestration service (i.e., at the level of YSTIA modules or in the dynamic

allocation strategy).

In the following, an example of the REST API for interacting with the Business Logic is provided:

• (POST) RequestLocations: it can be used to send a request for the best N locations where to run the next
task/job; N can be passed as a parameter of the call.

• (GET) GetLocations: it is used to retrieve the list of the best-found N locations where to run the next job/task.

• (DELETE) DeleteRequest: this can be used to cancel the previously issued “RequestLocations” request.

4.3 WORKLOAD PLACEMENT POLICY

The workload placement policy defines a mechanism which assigns a workflow task to a particular compute

resource while conforming to a given criterion. Within the context of LEXIS Orchestrator, we describe two types of

placement policies – static and dynamic.

The static placement policy describes a mechanism where assignment of the resources is done a priori, and it is

usually part of the workflow description. The assignment is done either by hand or automatically from a pre-defined

list, not taking into account past or future state of the resource. In LEXIS Orchestrator, YSTIA already implements

such policy, the placement of tasks is part of the TOSCA based description of the workflow.

On the other hand, dynamic placement policy assigns resource to a task while taking into account various inputs

and conforming to a given criterion. While specification of a preferred type of a resource can be part of the workflow

description, concrete assignment of a task to a particular compute resource (HPC Cluster, Cloud deployment, etc.)

is done automatically, when a task is scheduled for the execution. It can be formulated as an optimization problem

where criteria can be execution or data transfer time, overall cost, or other relevant ones. The dynamic placement

policy also must take into account requirements and constrains defined in Sections 2 and 3. Together with

application specific parameters and data provided by the infrastructure monitoring systems, various metrics can be

formulated. For example:

• Size of the input data set, number of iterations, resolution, etc.,

• Utilization of an HPC cluster queues,

• Storage utilization (free space and current load),

• Amount of free resources in a Cloud instance,

• Upcoming planned downtimes.

Given the metrics example, optimization criteria can be formulated such as:

• Minimize execution time while taking into account necessary data transfer time and current utilization of the
infrastructure (in correspondence to data placement policies defined in D4.3 [32]),

• Select a cloud infrastructure based on current free vCPUs, RAM or free space on a storage system,

• Ensure availability of the results by running same task on multiple resources.

There can be many more examples of metrics and criteria, their formalization is a subject of the upcoming work in

the second half of the project. Refinement will be based mainly on knowledge obtained from deploying pilot use

cases and workflows provided by the future OpenCall applicants.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 19/29

Based on this analysis, the underlying optimization problem can be solved for example by greedy algorithm inspired

by a similar approach used to optimize energy consumption of a data centre [33]. The metrics can be weighted,

normalised, and combined to provide a single number which will describe suitability of a particular resource for a

particular task given the values of the metrics. LINKS will develop a simulator in which multiple approaches to

formalization of the underlying optimization problem will be tested and the most suitable one will be implemented

in the final version of the LEXIS Orchestrator.

4.4 FULFILLING PILOT-DRIVEN REQUIREMENTS

Availability of a checkpointing mechanism is one of the identified requirements coming from the WP5 and WP7

pilot use cases. The mechanism has to be implemented by the application itself, which periodically persists its

current state – checkpoint, for example in a file. The application then should be able to load the previous stored

state and continue with the execution. Limiting factor can be that the application is able to perform the

checkpointing in long periods, therefore the shorter the checkpointing interval is, the less resources are wasted in

case of the execution failure.

To support this feature on an HPC cluster, the orchestrator typically has to provide the application a path to a

storage in which the application stores its checkpoints. The LEXIS Platform can support this by providing a DDI API

used by an application to store a checkpoint which can be later recovered for example in different HPC centre with

the access to the LEXIS DDI.

In a Cloud environment, common mechanism for the implementation of the checkpointing can be volume

snapshots. The Cloud service such as OpenStack has an API which can be called and snapshot of a particular volume

mounted to a VM is created. The LEXIS Orchestrator supports OpenStack API, therefore it satisfies this requirement

also in the Cloud.

Other requirements are related mainly to the capability of the orchestrator to manage urgent computing

workflows. Their typical characteristics are even-triggered execution (earthquake, flood) and hard requirement for

high-availability of the results. The second one can be further divided in a requirement to finish the execution in a

certain deadline and to provide resiliency for infrastructure failures.

The event-based execution is supported easily, by introducing a concept of iteration in the workflow, where

advance of the iteration is driven by a task which listens to an external data-source for the trigger event.

Requirement for the execution deadlines is satisfied by introducing the dynamic placement policy, which can be

used for the execution for shortest possible run-time given the current load of the resources, availability of reserved

queues and so on. High-availability (HA) requirement is satisfied in a similar way, where the same workflow can be

executed simultaneously on multiple centres to ensure its completion as well as resilient deployment of the LEXIS

Platform itself as described in the following section. The placement policy implemented by the orchestrator can be

modified to support such case.

4.5 SERVICE AVAILABILITY LEVEL AND RECOVERY OF WHOLE PLATFORM

The High Availability of LEXIS orchestration system is addressed by having HA deployments for both Yorc

(orchestration back-end) and Alien4Cloud (orchestration front-end).

Yorc can have as many instances as needed to scale horizontally. Each instance of Yorc provides a set of workers

responsible for executing workflow steps.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 20/29

Each Yorc instance is stateless:

• Static data like workflow description, associated Ansible playbooks, shell scripts, are stored in a POSIX
distributed file system (NFS for example) accessible by all instances.

• Runtime data are stored in a distributed key-value store, HashiCorp Consul [34].

Yorc High Availability is implemented relying on Consul features — service registry, health check and DNS

forwarding. Each Yorc instance registers itself as a service within Consul, providing a TCP health check endpoint.

Whenever a Yorc instance becomes unavailable, Consul will detect this through its registered Yorc service health

check and will stop to resolve the DNS requests to this Yorc instance, allowing seamless fail-over (see Figure 2).

Figure 2 Yorc high availability deployment

The front-end Alien4Cloud is using a DNS domain name to connect to Yorc, this domain name is resolved by Consul

to available Yorc instances, as seen above.

An Alien4Cloud HA deployment is based on a primary-backup mechanism (see Figure 3).

Static data like archive of application templates, plugins, are stored in a POSIX distributed file system. Alien4Cloud

runtime data are stored in an Elasticsearch cluster.

High availability is implemented using Consul features: health check and leader election. Whenever the primary

Alien4Cloud instance health check fails, the backup instance will be elected as the leader and will become active.

A reverse proxy like Nginx can then be used to have a single-entry point for Alien4Cloud instances.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 21/29

Figure 3 Alien4Cloud high availability deployment

See additional details on High Availability deployments in Yorc documentation [35] and Alien4Cloud documentation

[36].

4.6 ORCHESTRATOR SECURITY

As described in Deliverable D4.5 [37], the orchestrator front-end Alien4Cloud requires user authentication. This

authentication is delegated to LEXIS AAI that is based on the open source Keycloak solution.

Alien4Cloud communicates with its back-end orchestrator Yorc using TLS (Transport Layer Security) with mutual

authentication through certificates.

Yorc itself relies on HEAppE for the authentication required to access HPC and Cloud infrastructures.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 22/29

5 ORCHESTRATOR GLOSSARY AND TERMINOLOGY

The execution of workflows involves multiple levels of the LEXIS architecture, where executed/managed entities
have specific meaning at the different levels. To make the reader aligned with the terminology used all over the
LEXIS project and in the documentation, in the following, a set of terms (forming the LEXIS vocabulary) is presented
along with their definitions.
Since, the LEXIS architecture is aimed at providing execution resources to the end users, who can be not aware of
the underlying technological aspects involved in the LEXIS architecture, the terms are grouped in two sets
corresponding to a user-view and to the actual execution environment (i.e., YSTIA-orchestrator view). Figure
4 provides the user-view perspective of the LEXIS platform and how this is involved in the execution of workflows.

Figure 4 User-view of the LEXIS platform entities and their relationships

5.1 LEXIS ENTITIES TERMINOLOGY

5.1.1 LEXIS Computational Project

A LEXIS Computational Project is an abstraction of the computing and storage resources allocated for running LEXIS

workflows. As such, each LEXIS Computational Project may comprise of multiple associated HPC Computational

Projects which may be provided by different HPC centres following some dedicated approval process.

5.1.2 HPC Computational Project

An HPC Computational Project is an abstraction of the computing resources allocated to the HPC users by the HPC

centres for running their applications. HPC centres usually allocate a given amount of resources represented by

core hours (or different unit, depending on the centre). HPC Computational Projects have the following

characteristics:

• Requests are submitted by users that want to utilize the resources. HPC centres then grant the resources to
the selected requests. Part of the request for the resources is also a selection of a computing resource of the
centre (GPU nodes, Cloud, etc.).

LEXIS Workflow

DBDB

LEXIS Task

input/

relationship

output/

relationship

LEXIS

DATASET

LEXIS

DATASET

Principal

Investigator
HPC Computational Project

LEXIS Workflow Execution

LEXIS Task

Execution

LEXIS Task

Execution

LEXIS Task

Execution
….

LEXIS COMPUTATIONAL PROJECT LEXIS USER VIEW

LEXIS COMPUTATIONAL PROJECT

DBDB

LEXIS Workflow Template

DBDB

LEXIS Workflow Template

DBDB

LEXIS Workflow Template LEXIS

Workflow

Catalogue

LEXIS

DATASET

LEXIS

DATASET
LEXIS

DATASET

LEXIS

DATASET

LEXIS

DATASET
LEXIS

Dataset

Listing

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 23/29

• After the resources are granted, the HPC Computational Project is created. The project itself normally has an
ID which is unique within a given centre and has a given timeframe in which the resources have to be
consumed.

• Such a project typically has one Principal Investigator (see below) and possibly further project members with
administrator-like roles (privileged users), depending on the HPC centre and the project. The privileged and
normal users within an HPC Computational Project have respective accounts in the HPC centres’ AAI systems.

5.1.3 Principal Investigator

Each HPC Computational Project must have a Principal Investigator (PI) who is responsible for ensuring appropriate

use of the Project resources. The PI can perform standard administrative operations on the project including adding,

removing users, view usage, requesting more resources etc. Note that LEXIS can support HPC

Computational Projects in which the PI is not involved in any LEXIS Project (i.e., he/she is not a LEXIS user).

5.1.4 LEXIS Task

A LEXIS Task represents an element of the LEXIS Workflow, and it defines a set of operations to be performed, along

with attributes such as the required input data, output data, monitoring information etc. The lifecycle of a

LEXIS Task depends on the specific operations that it has to perform; however, it is (in any case) restricted to the

lifetime of the LEXIS Workflow.

5.1.5 LEXIS Workflow Template

The LEXIS Workflow Template is a description of the connections of LEXIS Tasks that must be performed to

complete the processing of the input LEXIS Datasets and producing output LEXIS Datasets. As such, LEXIS Tasks

inside a LEXIS Workflow Template can be organized to form a DAGs (Direct Acyclic Graph), with possibility to access

to databases, etc. A LEXIS Workflow Template provides a description of its LEXIS Tasks and the correct sequence of

their execution.

5.1.6 LEXIS Workflow

Starting from a LEXIS workflow template, the corresponding LEXIS Workflow associates the inputs to the LEXIS Tasks

and the application of configurations (i.e., setting up of specific input parameters) to each LEXIS Task.

5.1.7 LEXIS Workflow Execution

A LEXIS Workflow Execution represents the actual deployment of the LEXIS Workflow on the resources selected by

the orchestrator. As such, each LEXIS Task is deployed on the set of computational resources dynamically selected

by the orchestrator (according to monitoring data, internal placement policies, users’ specified criteria), along with

their required inputs (e.g., LEXIS User Dataset). The operations defining the LEXIS Tasks are thus executed. As such,

the execution of LEXIS Tasks generates outputs (e.g., output LEXIS User Dataset).

5.1.8 LEXIS Task Execution

A LEXIS Task Execution represents the actual execution of a task within a LEXIS Workflow Execution. As such, the

tasks are deployed on the resources dynamically selected by the orchestrator.

5.1.9 LEXIS Workflow Catalogue

The LEXIS Workflow Catalogue provides the repository of LEXIS Workflow Templates managed by the LEXIS

platform. It contains the set of of workflow templates (catalogue) that users can instantiate and execute on the

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 24/29

associated compute resources in particular centres (HPC systems, Cloud, etc.) Note that access restrictions apply

to the Workflow Catalogue: users can only create LEXIS Workflows based on LEXIS Workflow Templates available

to them.

5.1.10 LEXIS User Dataset

A LEXIS Dataset represents the input or output set of data that a LEXIS Workflow respectively consumes or produces

during its execution. The datasets can be uploaded/downloaded by the LEXIS Portal user interface.

5.1.11 LEXIS Dataset Listing

The LEXIS Dataset Listing produces a list of the datasets available via the LEXIS Distributed Data Infrastructure (DDI)

and via the WCDA (Weather and Climate Data API). In general, this comprises of public datasets, project specific

data sets and datasets owned/managed by the user, all hosted on the DDI.

5.2 ORCHESTRATION SERVICE TERMINOLOGY

In the following, a set of definitions specifically related to the entities directly managed by the LEXIS Orchestration

Service is provided. These entities are closer to their implementation in the YSTIA-based orchestration service.

Where appropriate, definitions are taken from the technologies in which they were developed.

5.2.1 YSTIA (A4C) Catalogue

YSTIA(A4C) Catalogue is an internal YSTIA orchestration system repository for storing YSTIA Application Templates,

as well as the TOSCA components that can be used to build the YSTIA Application Templates. Each TOSCA

component describes an entity that has to be deployed by the orchestrator, thus it can refer to both a software-

framework (e.g., the Docker engine), an application (e.g., a specific Docker container) and a computing resource

(e.g., a VM where to install Docker engine). The YSTIA Catalogue is also used to locally store YSTIA Application

Templates, either already available on the public YSTIA repository (YSTIA Forge) or defined for the purpose of

representing LEXIS workflows. The Catalogue can be populated by importing existing components and Application

Templates available on the public YSTIA repository, and by new ones defined by YSTIA architects and application

managers (see deliverable D4.2 [9]).

5.2.2 YSTIA (A4C) Application Template

An YSTIA Application Template provides a description of the computational components (i.e., jobs, virtual

computing instances, containers, etc.) and their relationships, that are intended to be executed on the allocated

computational and storage resources. An YSTIA Application Template is stored in the YSTIA catalogue. An

YSTIA (A4C) Application Template allows to define input/output parameters, that may be used to specify

input/output datasets that are, respectively, consumed and generated once instantiated and executed. The access

to the dataset is mediated through the DDI API.

5.2.3 YSTIA (A4C) Application

It is an instantiation of an YSTIA Application Template on the resources selected by the orchestration engine.

5.2.4 YSTIA (Yorc) Workflow

It defines the set of operations that must be performed to execute an Ystia Application. The operations can be

executed both sequentially and in parallel, as generally DAGs can be supported. Since YSTIA components are

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 25/29

associated to an interface exposing a set of actions (i.e., start, stop, deploy, run, etc.) that are performed by the

orchestrator engine, more than one workflow can be defined and associated to an YSTIA Application Template.

5.2.5 YSTIA (Yorc) Workflow Run

The YSTIA(Yorc) Workflow Run represents the workflow that is executed by the orchestration engine in accordance

to run an action. It comprises all the operations required to run jobs on the HPC resources and on the Cloud virtual

instances.

5.2.6 LEXIS Workflow Extraction from AC4 Application Template

An YSTIA Application Template provides a detailed description of the components and their relationships, which in

turn describe the entire execution process for a given application. The operations required to execute the

corresponding YSTIA Application are contained in the YSTIA workflows. The A4C Application Template also serves

as a concrete description of a LEXIS Workflow. As such, the LEXIS Workflow Extraction consists in the process of

abstracting as much as possible the actions involved in the YSTIA workflow(s), exposing A4C Application Template

components which contain tags describing their functionality.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 26/29

6 SUMMARY

This document provides an initial description of the LEXIS orchestrator allocation policies. First sections summarise

requirements and metrics provided by the pilot use cases (WP5-7) and infrastructure consisting of IT4I and LRZ

Cloud and HPC systems. Basic algorithmic framework is proposed based on the provided requirements and metrics

and possible allocation policies are discussed. Common terminology glossary is also provided to establish a common

ground for orchestrator related communication within the project consortium. The discussed policies will be further

formalized and verified by simulator developed by LINKS and furthermore by LEXIS Pilot use cases. The

improvements will also gain from the requirements and overall progress of the LEXIS Open Call applicants (see

Deliverable D9.4 [38]). Formalized description of the policies will be presented in the Deliverable 4.6 [1].

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 27/29

REFERENCES

[1] LEXIS Deliverable, D4.6 Design and Implementation of the HPC-Federated Orchestration System – Final.

[2] LEXIS Deliverable, D5.1 Turbomachinery Use Case: Analysis of Results Run on State-of-Art HPC System.

[3] LEXIS Deliverable, D5.2 Rotating Parts Use Case: Analysis of Results Run on State-of-Art HPC System.

[4] LEXIS Deliverable, D6.1 Baseline scenarios and requirements.

[5] LEXIS Deliverable, D6.2 Pilots Improvements: Solutions Adopted.

[6] LEXIS Deliverable, D7.1 Design for Interchange of Weather & Climate Model Output between HPC and Cloud

Environments.

[7] “Intel OPAE,” [Online]. Available: https://opae.github.io/latest/index.html. [Accessed May 2020].

[8] A. Rajasekar, R. Moore and et al., “iRODS primer: integrated rule-oriented data system,” Synthesis Lectures

on Information Concepts, Retrieval, and Services, vol. 2, no. 1, pp. 1-143, 2010.

[9] LEXIS Deliverable, D4.2 Design and Implementation of the HPC-Federated Orchestration System -

Intermediate.

[10] M. Somnath and M. Pranzo, “Power efficient server consolidation for cloud data center,” Future Generation

Computer Systems, vol. 70, pp. 4-16, 2017.

[11] M. C. Cohen, P. W. Keller, M. Vahab and M. Zadimoghaddam, “Overcommitment in Cloud Services: Bin

Packing with Chance Constraints,” Management Science, p. 1–17, 2019.

[12] S. H. Madni, M. S. A. Latiff, S. M. Abdulhamid and J. Ali, “Hybrid gradient descent cuckoo search (HGDCS)

algorithm for resource scheduling in IaaS cloud computing environment." Cluster Computing 22.1,” Cluster

Computing, vol. 22, no. 1, pp. 301-334, 2019.

[13] M. Somnath, A. Scionti and A. S. Kumar, “Adaptive resource allocation for load balancing in cloud,” in Cloud

Computing, Springer, Cham, 2017, pp. 301-327.

[14] S. Singh and I. Chana, “A survey on resource scheduling in cloud computing: Issues and challenges,” Journal

of grid computing, vol. 14, no. 2, pp. 217-264, 2016.

[15] R. Prodan, M. Wieczorek and H. M. Fard, “Double auction-based scheduling of scientific applications in

distributed grid and cloud environments,” Journal of Grid Computing, vol. 9, no. 4, p. 531–548, 2011.

[16] G. Iyer and B. Veeravalli, “On the resource allocation and pricing strategies in Compute Clouds using

bargaining approaches,” in 17th IEEE International Conference on Networks (ICON), 2011.

[17] A. Oprescu and T. Kielmann, “Bag-of-tasks scheduling under budget constraints,” in IEEE Second

International Conference on Cloud Computing Technology and Science (CloudCom), 2010.

[18] Z. Liu, S. Wang, Q. Sun, H. Zou and F. Yang, “Cost-Aware Cloud Service Request Scheduling for SaaS

Providers,” The Computer Journal, vol. 57, no. 2, pp. 291-301, 2013.

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 28/29

[19] M. Rahman, R. Hassan, R. Ranjan and R. Buyya, “Adaptive workflow scheduling for dynamic grid and cloud

computing environment,” Concurrency and Computation: Practice and Experience, vol. 25, no. 13, p. 1816–

1842, 2013.

[20] G. Xu, Y. Ding, J. Zhao, L. Hu and X. Fu, “A novel artificial bee colony approach of live virtual machine

migration policy using Bayes theorem (Article ID 369209),” Science World Journal, vol. 13, 2013.

[21] X. Song, L. Gao and J. Wang, “Job scheduling based on ant colony optimization in cloud computing,” in

International Conference on Computer Science and Service System (CSSS), 2011.

[22] A. Quarati and et al., “Scheduling strategies for enabling meteorological simulation on hybrid clouds,”

Journal of Computational and Applied Mathematics, vol. 273, pp. 438-451, 2015.

[23] S. H. Leong, A. Frank and D. Kranzlmüller, “Leveraging e-infrastructures for urgent computing,” Procedia

Computer Science, vol. 18, pp. 2177-2186, 2013.

[24] E. J. Korpela, “SETI@ home, BOINC, and volunteer distributed computing,” Annual Review of Earth and

Planetary Sciences, vol. 40, pp. 69-87, 2012.

[25] A. Tsaregorodtsev and et al., “DIRAC: a community grid solution,” Journal of Physics: Conference Series, vol.

119, no. 6, p. 062048, 2008.

[26] V. Garonne, A. Y. Tsaregorodtsev and I. Stokes-Rees, “DIRAC: Workload Management System,” Computing in

High Energy Physics and Nuclear Physics, pp. 1041-1044, 2004.

[27] A. Tsaregorodtsev, “DIRAC distributed computing services,” Journal of Physics: Conference Series, vol. 513,

no. 3, p. 032096, 2014.

[28] LEXIS Deliverable, D2.2 Key parts LEXIS Technology Deployed on Existing Infrastructure and Key Technologies

Specification.

[29] LEXIS Deliverable, D2.3 Report of LEXIS Technology Deployment - Intermediate Co-Design.

[30] “Alien4Cloud REST API,” [Online]. Available:

https://alien4cloud.github.io/#/documentation/1.3.0/rest/overview.html. [Accessed May 2020].

[31] LEXIS Deliverable, D8.1 First Release of LEXIS Portal (will include report).

[32] LEXIS Deliverable, D4.3 Definition of Data Access Priority, Analytics Policies, and Security Assessment.

[33] A. Scionti, K. Goga, F. Lubrano and O. Terzo, “Scionti, Alberto, et al. "Towards Energy Efficient Orchestration

of Cloud Computing Infrastructure." Conference on Complex, Intelligent, and Software Intensive Systems.

Springer, Cham, 2018.,” in 12th International Conference on Complex, Intelligent, and Software Intensive

Systems, CISIS 2018, 2018.

[34] “HashiCorp Consul,” [Online]. Available: https://www.consul.io/intro/index.html. [Accessed June 2020].

[35] “Yorc High Availability,” [Online]. Available: https://yorc.readthedocs.io/en/latest/ha.html. [Accessed May

2020].

[36] “Alien4Cloud High Availability,” [Online]. Available:

http://alien4cloud.github.io/#/documentation/2.2.0/admin_guide/ha.html. [Accessed May 2020].

D4.4 | Definition of Workload Management Policies in Federated Cloud/HPC Environments

 LEXIS: Large-scale EXecution for Industry & Society

 29/29

[37] LEXIS Deliverable, D4.5 Definition of Mechanisms for Securing Federated Infrastructures.

[38] LEXIS Deliverable, D9.4 Open Call Framework and Stakeholders Engagement on Targeted Large-Scale Pilots -

first report.

